RSS

การให้เหตุผลแบบอุปนัยและตัวอย่าง

01 มี.ค.

1. การให้เหตุผลแบบอุปนัย

           การให้เหตุผลแบบอุปนัย  เป็นการให้เหตุผลโดยอาศัยข้อสังเกตหรือผลการทดลองจากหลาย ๆ ตัวอย่าง มาสรุปเป็นข้อตกลง หรือข้อคาดเดาทั่วไป  หรือคำพยากรณ์ ซึ่งจะเห็นว่าการจะนำเอาข้อสังเกต   หรือผลการทดลองจากบางหน่วยมาสนับสนุนให้ได้ข้อตกลง หรือ ข้อความทั่วไปซึ่งกินความถึงทุกหน่วย ย่อมไม่สมเหตุสมผล  เพราะเป็นการอนุมานเกินสิ่งที่กำหนดให้ ซึ่งหมายความว่า  การให้เหตุผลแบบอุปนัยจะต้องมีกฎของความสมเหตุสมผลเฉพาะของตนเอง  นั่นคือ  จะต้องมีข้อสังเกต หรือผลการทดลอง หรือ มีประสบการณ์ที่มากมายพอที่จะปักใจเชื่อได้  แต่ก็ยังไม่สามารถแน่ใจในผลสรุปได้เต็มที่ เหมือนกับการให้เหตุผลแบบนิรนัย  ดังนั้นจึงกล่าวได้ว่าการให้เหตุผลแบบนิรนัยจะให้ความแน่นอน แต่การให้เหตุผลแบบอุปนัย  จะให้ความน่าจะเป็น

          ตัวอย่างการให้เหตุผลแบบอุปนัย  เช่น  เราเคยเห็นว่ามีปลาจำนวนมากที่ออกลูกเป็นไข่เราจึงอนุมานว่า “ปลาทุกชนิดออกลูกเป็นไข่”  ซึ่งกรณีนี้ถือว่าไม่สมเหตุสมผล  ทั้งนี้เพราะ ข้อสังเกต  หรือ  ตัวอย่างที่พบยังไม่มากพอที่จะสรุป  เพราะโดยข้อเท็จจริงแล้วมีปลาบางชนิดที่ออกลูกเป็นตัว  เช่น  ปลาหางนกยูง เป็นต้น

          โดยทั่วไปการให้เหตุผลแบบอุปนัยนี้  มักนิยมใช้ในการศึกษาค้นคว้าคุณสมบัติต่าง ๆ ทางด้านวิทยาศาสตร์  เช่น ข้อสรุปที่ว่า  สารสกัดจากสะเดาสามารถใช้เป็นยากำจัดศัตรูพืชได้ ซึ่งข้อสรุปดังกล่าวมาจากการทำการทดลอง ซ้ำ ๆ กันหลาย ๆ ครั้ง  แล้วได้ผลการทดลองที่ตรงกันหรือในทางคณิตศาสตร์จะใช้การให้เหตุผลแบบอุปนัย  ในการสร้างสัจพจน์ เช่น  เมื่อเราทดลองลากเส้นตรงสองเส้นให้ตัดกัน  เราก็พบว่าเส้นตรงสองเส้นจะตัดกันเพียงจุด ๆ เดียวเท่านั้น  ไม่ว่าจะทดลองลากกี่ครั้งก็ตาม  เราก็อนุมานว่า    “เส้นตรงสองเส้นตัดกันเพียงจุด ๆ เดียวเท่านั้น”

           ตัวอย่าง 1.

                           เมื่อเรามองไปที่ห่านกลุ่มหนึ่งพบว่า
ห่านตัวนี้สีขาว
ห่านตัวนั้นก็สีขาว
ห่านตัวโน้นก็สีขาว
ห่านนั้นก็สีขาว
                           ดังนั้น ห่านทุกตัวคงจะต้องมีสีขาว

           ตัวอย่าง 2

                           ในการบวกเลข   2  จำนวน เราพบว่า
1+2  = 2+1
2+3  = 3+2
…………
…………
                           เราอาจสรุปได้ว่าทุกๆจำนวน a และ b  จะได้ว่า a + b = b + a

           ตัวอย่าง 3 

                           จากการสร้างรูปสามเหลี่ยมในระนาบ  พบว่า
เส้นมัธยฐานของสามเหลี่ยมรูป A พบกันที่จุดๆหนึ่ง
เส้นมัธยฐานของสามเหลี่ยมรูป B พบกันที่จุดๆหนึ่ง
เส้นมัธยฐานของสามเหลี่ยมรูป C พบกันที่จุดๆหนึ่ง
                           ดังนั้น เส้นมัธยฐานของสามเหลี่ยมใดๆ  พบกันที่จุดๆหนึ่งเสมอ
ข้อสังเกต 

1.ข้อสรุปของการให้เหตุผลแบบอุปนัยอาจจะไม่จริงเสมอไป

2. การสรุปผลของการให้เหตุผลแบบอุปนัยอาจขึ้นอยู่กับประสบการณ์ของผู้สรุป

3. ข้อสรุปที่ได้จากการให้เหตุผลแบบอุปนัยไม่จำเป็นต้องเหมือนกัน

ตัวอย่าง   กำหนด จำนวน 2, 4, 6 , a จงหา จำนวน a  จะได้ a = 8
              กำหนด จำนวน 2, 4, 6 , a จงหา จำนวน a 
  จะได้ a = 10  เพราะว่า 4 + 6  = 10
กำหนด จำนวน 2, 4, 6 , a จงหา จำนวน a  จะได้ a = 22
              เพราะว่า 6 = (2 x 4)-2 และ 22 = (4 x 6)-2

4. ข้อสรุปของการให้เหตุผลแบบอุปนัยอาจ ผิดพลาดได้

ตัวอย่าง ให้ F(n) = n2 – 79n + 1601

ทดลองแทนค่าจำนวนนับ n ใน F(n)
n = 1 ได้  F(1) = 1523 เป็นจำนวนเฉพาะ
n = 2 ได้  F(2) = 1447 เป็นจำนวนเฉพาะ
n = 3 ได้  F(3) = 1373 เป็นจำนวนเฉพาะ

F(n) = n2 – 79n + 1601

แทนค่า n ไปเรื่อยๆ จนกระทั่งแทน n = 79  ได้ F(79)  เป็นจำนวนเฉพาะ

จากการทดลองดังกล่าว   อาจสรุปได้ว่า  n2 – 79n + 1601 เป็นจำนวนเฉพาะ สำหรับทุกจำนวนนับ   แต่…
F(n)   = n2 – 79n + 1601
F(80) = 802 – (79)(80) + 1601
=  1681
=   (41)(41)

F(80) ไม่เป็นจำนวนเฉพาะ

About these ads
 
แสดงความคิดเห็น

Posted by บน มีนาคม 1, 2012 in Uncategorized

 

ใส่ความเห็น

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / เปลี่ยนแปลง )

Twitter picture

You are commenting using your Twitter account. Log Out / เปลี่ยนแปลง )

Facebook photo

You are commenting using your Facebook account. Log Out / เปลี่ยนแปลง )

Google+ photo

You are commenting using your Google+ account. Log Out / เปลี่ยนแปลง )

Connecting to %s

 
ติดตาม

Get every new post delivered to your Inbox.

%d bloggers like this: